Nematic/Smectic-A Transition (NS_A), Location of Tri Critical Point (TCP) in nO.m Series – A Birefringence Study

Venkata G. K. M. Pisipati^a, Divi Madhavi Latha^a, Boddapati T. P. Madhav^a, and Potapragada V. Datta Prasad^b

^a Liquid Crystal Research Centre, ECE, Department, Koneru Lakshmaiah University, Vaddeswaram, 522 502, India

^b Department of Physics, The Hindu College, Machilipatnam, 521 001, India Reprint requests to V. G. K. M. P.; E-mail: venkata_pisipati@hotmail.com

Z. Naturforsch. **65a**, 335 – 341 (2010); received April 16, 2009 / revised July 23, 2009

The tri critical point (TCP), where the second-order transition transforms to first order has been located in nO.m homologous series. The order parameter has been estimated from the birefringence δn , from the refractive indices and from birefringence data available in literature and from those obtained at our laboratory on a number of nO.m compounds. The compounds in the nO.m series exhibit both second and first-order nematic/smectic-A (NS_A) transition depending on the McMillan ratio (T_{NA}/T_{IN}) which in turn depends on the nematic and smectic-A thermal ranges. The data presented are compared with the body of the data available on this homologous series obtained with other techniques.

Key words: nO.m Compounds; NS_A Phase Transition; Tricritical Point (TCP); Birefringence.